
Section 6

Lecture 2

Mats Stensrud Causal Thinking Autumn 2023 47 / 396



We make decisions based on ”what if” questions...

Some repetition from the first lecture.

Would starting treatment A prevent a heart attack?

Is Drug A better than Drug B?

Would the election campaign increase the number of votes?

Would university education increase my future earnings?

What would happen if I went to UNIGE instead of EPFL?
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Section 7

More on the definition of causal e↵ects
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E↵ect contrasts

Additive e↵ect: E(Y a=1)� E(Y a=0) = E(Y a=1 � Y
a=0).

The additive e↵ect is an average over individual level causal e↵ects.
These are marginal quantities.

Relative e↵ect: E(Y a=1)

E(Y a=0)
6= E

⇣
Y a=1

Y a=0

⌘
.

The relative e↵ect is not an average over individual level causal
e↵ects.
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Counterfactuals a.k.a. potential outcomes

We will posit unobserved fixed potential or counterfactual outcomes3

for each unit4 under di↵erent treatments.5

Hint: It is helpful to think about a counterfactual random variable as
a variable that does exist in this world, even before interventions
take place, but we are not able to observe it.

We will use superscripts to indicate that a random variable is
counterfactual. For example consider a random variable Y . A
counterfactual version Y

g is the value Y would have had under an
intervention g (also called treatment regime or treatment strategy).

To get started, in the first lectures, we will consider some simple
interventions g which only fixes a binary treatment A to a value
a 2 {0, 1}.

3I will use the terms ”counterfactuals” and ”potential outcomes”. interchangeably.
4I will use the terms ”unit”, ”subject” and ”individual” interchangeably.
5I will use the terms ”treatment” and ”exposure” interchangeably.
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Illustrative experiment (trial) on heart transplant.

Assess the e↵ect of A 2 {0, 1} (1 if heart transplant, 0 otherwise) on
Y 2 {0, 1} (1 if dead, 0 otherwise)6.

6Miguel A Hernan and James M Robins. Causal inference: What if? CRC Boca
Raton, FL:, 2018.Mats Stensrud Causal Thinking Autumn 2023 52 / 396



Remark on counterfactuals

We have presupposed that:

Y
a = Y for every unit with A = a. In other words, Y A = Y .

”Consistency”. That is, Y = I (A = 0)Y a=0 + I (A = 1)Y a=1.

This ”consistency” assumption requires that
The intervention on A is well-defined.
No matter how unit i received treatment a, the outcome Y

a is the
same.
The counterfactual outcome of unit i does not depend on the
treatment values of other units j , that is, ”no interference”.
Otherwise Y

a
i is not well-defined.7

7This use of consistency is di↵erent from the use in estimation.
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More on consistency

An example of an ill-defined intervention:
Imagine A is a person’s body mass index (BMI). Setting the BMI to a
counterfactually di↵erent level can happen in many di↵erent ways - losing
weight by running, loss of appetite due to chain smoking, liposuction etc.
Depending on what way the intervention is implemented each time, we will
have very di↵erent health outcomes, i.e., re-running the experiment will
give inconsistent results.
Another example is infectious diseases
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Average causal e↵ect

Definition (Average causal e↵ect)

E(Y a=0) vs E(Y a=1).

Average causal e↵ects can sometimes be identified from data (we will
study this extensively).

In most of this course, average causal e↵ects will be our parameters
of interest, i.e. our target estimands.
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E↵ect contrasts

Additive e↵ect: E(Y a=1)� E(Y a=0) = E(Y a=1 � Y
a=0).

The additive e↵ect is an average over individual level causal e↵ects.
These are marginal quantities.

Relative e↵ect: E(Y a=1)

E(Y a=0)
6= E

⇣
Y a=1

Y a=0

⌘
.

The relative e↵ect is not an average over individual level causal
e↵ects.
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Causal e↵ects in the population

More generally, we can consider population causal e↵ects8:

Definition (Population causal e↵ect)

A population causal e↵ect can be defined as a contrast of any functional
of the marginal distributions of counterfactual outcomes under di↵erent
interventions.

For example VAR(Y a=1)� VAR(Y a=0).
Remember that we cannot identify VAR(Y a=1 � Y

a=0).

From here on, I will often say causal e↵ect when I talk about average
causal e↵ect.

8Hernan and Robins, Causal inference: What if?
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The task of identification

Definition (Identification)

A parameter is said to be identified under a particular collection of
assumptions if it can be expressed uniquely as a function of the
distribution (law) of the observed variables.

That is, a parameter (estimand) is identified under a particular collection
of assumptions if these assumptions imply that the distribution of the
observed data is compatible with a single value of the parameter.

Mats Stensrud Causal Thinking Autumn 2023 58 / 396



A more formal argument why randomisation is the gold
standard

In the previous lecture, I claimed that

In a randomised experiment, the treatment is assigned independently
of all other factors (e.g. by a coin flip or a random number generator).

In a randomised experiment one of the counterfactual outcomes Y a=0

or Y a=1 is unobserved.

However, randomisation ensures that it is random whether Y a=0 or
Y

a=1 is unobserved, that is,

P(Y a = y | A = 1) = P(Y a = y | A = 0), 8a 2 {0, 1}, 8y 2 Y.

because the treatment assignment is independent of all other factors,
including the counterfactual outcomes (Y a). This conditional
independence is called exchangeability and will be important in our
identification arguments.
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Independence notation

Definition (Conditional independence)

X ?? Y | Z () FX ,Y |Z=z(x , y) = FX |Z=z(x) · FY |Z=z(y) 8 x , y , z ,
where FX ,Y |Z=z(x , y) = P(X  x ,Y  y | Z = z).

We say that X and Y are conditionally independent given Z .
In other words, when Z = z is known, X provides no additional
information that allows us to predict Y .
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Exchangeability (re-visited)

In particular, we can re-write the condition from Slide 59,

P(Y a = y | A = 1) = P(Y a = y | A = 0), 8a 2 {0, 1}, 8y 2 Y,

as
Y

a ?? A, 8a 2 {0, 1}.
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Example conditions that ensure identification of causal
e↵ects

Suppose that the following 3 conditions hold:

1 Y
a ?? A, 8a 2 {0, 1} (exchangeability9).

2 P(A = a) > 0 8a 2 {0, 1} (positivity10).

3 Y
a = Y for every unit with A = a (consistency11).

that is, Y = I (A = 0)Y a=0 + I (A = 1)Y a=1.

From (1)-(3), E(Y a) = E(Y | A = a).
That is, we have identified E(Y a) as a functional of observed data.
Assumptions (1)-(3) are external to the data, but – importantly – they
hold by design in a perfectly executed experiment.
Just to be clear: The counterfactual independence Y

a ?? A, 8a 2 {0, 1}
does NOT imply the factual independence Y ?? A.

9Also called ignorability.
10Also called overlap. Note that this is a feature of the distribution, not the sample.
11Similar to the condition SUTVA: Stable Unit Treatment Value Assumption.
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Side note: relation to previous statistics courses

So far you have considered random variables, say, Y .

Y has a law – i.e. distribution – and you have inferred, i.e. estimated

or learned features of this law: deterministic features of this random
variable.

In the regression courses, you went further and looked at random
variables conditional on parameters. For example, linear regression is
the best (min squared error) linear approximation of Y (or of
E[Y | A]). where x is a parameter.

We consider the problem of identifying functionals f (Y a).
If a functional is identified, then we can use what you have learned so
far (and more) to estimate these functionals.
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Terminology

Remember the di↵erence between the following terms:

Estimand (a parameter of interest, often a causal e↵ect).

Estimator (an algorithm / function that can be applied to data).

Estimate (an output from applying the estimator to data).

We talk about bias of an estimator with respect to an estimand.
That is, the term bias (biased / unbiased) is defined with respect to an
estimand.
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Terminology

Mats Stensrud Causal Thinking Autumn 2023 67 / 396



A simple example of estimation of causal e↵ects

Because E(Y a) = E(Y | A = a), the simple di↵erence-in-means estimator,

�̂ =
1

n1

X

Ai=1

Yi �
1

n0

X

Ai=0

Yi , na =
nX

i=1

I (A = a),

is an unbiased estimator of the average (additive) causal e↵ect of A in a
randomised experiment.
We will discuss estimation in more detail later in this course.
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Conditional randomisation

Let L 2 {0, 1}
In the heart transplant example, let L = 1 if the individual is critically
ill, 0 otherwise.

Suppose A is conditionally randomised as a function of L such that
P(A = 1 | L = 0) = p0 and P(A = 1 | L = 1) = p1,
where p0 6= p1 and p0, p1 2 (0, 1).

How do we identify E(Y a)?
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Illustrative conditional experiment (trial) on heart
transplant

In this conditional randomised trial p0 = 0.5, p1 = 0.75.
Compute an estimator based on the numbers above, and you will find that
Ê(Y a=1)� Ê(Y a=0) = 0.
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Identification in a conditional randomised experiment

A is conditionally randomised such that P(A = 1 | L = 0) = p0 and

P(A = 1 | L = 1) = p1, where p0 6= p1 and p0, p1 2 (0, 1).

Y
a 6?? A, 8a 2 {0, 1} (Exchangeability from Slide 63 may fail), but

1 Y
a ?? A | L, 8a 2 {0, 1} (Exchangeability).

2 P(A = a | L = l) > 0 8a 2 {0, 1}, 8l s.t. P(L = l) > 0. (positivity).

3 Y
a = Y for every unit with A = a (consistency).

When 1-3 hold, then

E(Y a) =
X

l

E(Y | L = l ,A = a)P(L = l).

These conditions hold by design in a conditional randomised experiment.
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Identification in a conditional randomised experiment

Proof.

E(Y a) =
X

l

E(Y a | L = l)P(L = l)

=
X

l

E(Y a | L = l ,A = a)P(L = l) (exchangeability)

=
X

l

E(Y | L = l ,A = a)P(L = l). (positivity and consistency)

We say that the 3rd line is an identification formula for E(Y a).
This is a special case of a so-called G-formula (or truncation formula).12

12James M Robins. “A new approach to causal inference in mortality studies with a
sustained exposure period—application to control of the healthy worker survivor e↵ect”.
In: Mathematical modelling 7.9-12 (1986), pp. 1393–1512.
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Alternative weighted identification formula

E(Y a) =
X

l

E(Y | L = l ,A = a) Pr(L = l)

= E

I (A = a)

⇡(A | L) Y
�
.

where ⇡(a | l) = P(A = a | L = l),
Why bother with equivalent expressions?
Because they motivate di↵erent estimators.
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Proof of IPW

Proof.

E

I (A = a)

⇡(A | L) Y
�

=E


I (A = a)

P(A = a | L)Y
a

�
(consistency and positivity)

=E

E
⇢

I (A = a)

P(A = a | L)Y
a | L

��

=E
⇢
E


I (A = a)

P(A = a | L) | L
�
E [Y a | L]

�
(exchangeability)

=E {E [Y a | L]} = E [Y a] .
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Section 8

Lecture 3
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